SOME RESULTS ON T1-CLASS OF LINEAR ESTIMATORS

PULAKESH MAIT1 Indian Statistical Institute, Calcutta (Received: May, 1984)

SUMMARY

 T_1 class of linear estimators is examined to obtain a biased subclass of estimators, better than the sample mean \bar{p} .

Keywords: SRSWOR, Searls' estimator, UMMSE-estimator, Sampling strategy.

Introduction

Let $\bigcup = \{1, 2, \ldots, N\}$ be a finite population of N (given) units labelled 1 to N and y be a variable (real) which takes value y_i on the *i*th unit, $(i = 1, 2, \ldots, N)$.

Let

$$\overline{Y} = \sum_{i=1}^{N} y_i / N$$
, $\sigma_y^2 = \sum_{i=1}^{N} (y_i - \overline{Y})^2 / N$ and $C_y = \sigma_y / \overline{Y}$

be the population mean, variance and coefficient of variation of y respectively. It is desired to estimate \overline{Y} on the basis of a sample of n units drawn by simple random sampling without replacement (SRSWOR).

The T_1 -class of linear estimators for \overline{Y} based on a sample of size n, may be defined by

$$\hat{T}_1 = \sum_{r=1}^N a_r y_r \tag{1.1}$$

where $a_r(r = 1, 2, ..., n)$ is the weight associated with the y-value of the unit appearing at the rth draw (Horvitz and Thompson [2], Koop [3] [4]).

When $a_r = \lambda/n$, for all r = 1, 2, ..., n, \hat{T}_1 reduces to

$$\widehat{T}_1^* = \lambda \, \bar{y} \tag{1.2}$$

where f is the sample mean and the optimum value of λ which minimises the mean square error (MSE), $M(\hat{T}_1^*)$ of \hat{T}_1^* is

$$\lambda_0 = 1/[1 + K C_v^2]$$

in the case of SRSWOR, where K = (N - n)/n(N - 1). The resulting estimator discussed by Searls [5] is defined by

$$\hat{T}S = \bar{y}/[1 + K C_y^2]$$

with bias and MSE given by

$$B(\hat{T}_S) = - K C_y^2 \bar{Y}/[1 + K C_y^2]$$

and

$$M(\hat{T}_{S}) = K \ \overline{Y}^{2} C_{y}^{2}/[1 + K C_{y}^{2}].$$

Obviously, \hat{T}_s , a member of T_1 -class is better than the sample mean p (in the sense of having a smaller MSE) and the relative efficiency of Searls' estimator \hat{T}_s over p is found to be

$$R(\widehat{T}_{\mathcal{S}}/\overline{y}) = [1 + K C_y^2].$$

It is well known that in the case of general sampling designs, there does not exist a best linear unbiased estimator in the unbiased subclass of the class of linear estimators (Koop [3], [4]; Ajgaonkar [1]). However, in the case of SRSWOR, $\mathfrak P$ is found to be the best in the unbiased subclass of the T_1 -class. The question arises: does there exist the best linear (uniformly minimum mean square error UMMSE) estimator in the entire linear class T_1 ? Further, are there some biased estimators in T_1 -class better than $\mathfrak P$?

In this paper, these questions are answered confining to SRSWOR.

2. Existence of the UMMSE-estimator in T_1

THEOREM 2.1: If C_{ν} is known exactly, then the sampling strategy (SRSWOR, \hat{T}_s) is the best in the class of strategies (SRSWOR, \hat{T}_1) for \bar{Y} . Proof: MSE of the estimator \hat{T}_1 is found to be

$$M(\hat{T}_1) = N \sigma_y^2 \sum_{r=1}^n a_r^2 / (N-1) - \sigma_y^2 \left(\sum_{r=1}^n a_r \right)^2 + \overline{Y}^2 \left(\sum_{r=1}^n a_r - 1 \right)^2$$
(2.1)

It may be shown that $M(T_1)$ would be a minimum for

$$a_r = 1/n (1 + KC_v^2),$$
 (2.2)

and in this case, T_1 reduces to T_2 . Hence the result.

Although, the sampling strategy (SRSWOR, \hat{T}_S) is the best in the class of strategies (SRSWOR, \hat{T}_1), it can be shown through numerical illustration that the efficiency of \hat{T}_S over \hat{y} is almost negligible when K < 0.01 and $C_V < 1$. Thus the Searls' estimator should be used only in other situations provided the exact value of C_V is known.

It may be shown that \hat{T}_1^* would be better than \bar{y} under SRSWOR, iff

$$[1 - K C_y^2]/[1 + K C_y^2] < \lambda < 1$$
 (2.3)

and hence a sufficient condition for \hat{T}_1^* to be better than \bar{y} would be

$$[1 - K C_{(1)}^2]/[1 + K C_{(1)}^2] \le \lambda < 1$$
 (2.4)

which may be modified to

$$1/[1+KC_{(1)}^2] \leqslant \lambda < 1$$

where $C_{(1)}$ is any quantity such that $C_{(1)}^2 \leqslant C_y^2$

Let us call \hat{T}_1^* with λ satisfying (2.4), a modified Searls' estimator \hat{T}_s' , i.e.,

$$\hat{T}'_{S} = \lambda \, \bar{y}, \, \lambda \epsilon \, [(1 - K \, C_{(1)}^2)/(1 + K \, C_{(1)}^2), \, 1] \text{ or } \lambda \epsilon \, [1/(1 + K C_{(1)}^2), \, 1].$$

The following Table 2.1 shows the percent relative efficiency of the estimators $\hat{T}_S = \bar{p}/[1 + K C_p^2]$ and $\hat{T}_S' = \lambda \bar{p}$, $\lambda \epsilon [(1 - K C_{(1)}^2)/(1 + K C_{(1)}^2)]$, 1] over \bar{p} to observe the sensitivity of the estimators \hat{T}_S' to departures of optimum choice of λ in $\hat{T}_2^* = \lambda \bar{p}$.

For this, we have considered the populations of having $C_v > 0.5$. Let N = 5, n = 5 and $C_{(1)} = 0.5$.

From (2.4), it may be shown that $T'_S = \lambda \ \bar{y}$ will be better than \bar{y} for all λ satisfying

$$0.9200 \leqslant \lambda \lessdot 1.$$

3. Estimators in T_1 Better than the Sample Mean

In this section, we search for biased estimators in T_1 based on SRSWOR, but better than \mathfrak{p} .

TABLE 2.1—PERCENT RELATIVE EFFICIENCY OF \hat{T}_S AND \hat{T}_S' OVER \overline{y}_s , FOR DIFFERENT VALUES OF C_{Ψ} AND λ^*s .

			/		
λ	0.25	$\frac{C_y^2}{I}$	2.25	4.00 (5) 166.39 (0.60)* 112.48	
(1)	(2)	(3)	(4)		
· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	104.17 (0.96)*	116.23 (0.86)*	137.30 (0.72)*		
0.94	103.08	110.47	111.95		
0.95	103.89	108.99	109.98	110.34	
0.97	103.89	105.67	106.01	106.13	
0.98	103.09	103. 86	104.01	104.05	

^{*}Values in the bracket denote the optimum choice of λ .

Let

$$l = \sum_{r=1}^{n} a_r, l_0 = \sum_{r=1}^{n} a_r^3$$
 and $Q = l^2 + \left(\frac{N}{n} - 1\right) - N l_0$.

Next we have the following

THEOREM 3.1: Let a_1, a_2, \ldots, a_n be chosen such that Q > 0. Then a necessary and sufficient condition for the sampling strategy (SRSWOR, \hat{T}_1) to be better than the strategy (SRSWOR, \hat{y}) is

$$(N-1)(l-1)^{2}/Q \leqslant C_{\nu}^{2}$$
(3.1)

Proof: From 2.1, the MSE of T_1 is found to be

$$M(\hat{T}_1) = \bar{Y}^2 \left[(l-1)^2 + \frac{(Nl_0 - l^2)}{(N-1)} C_v^2 \right]$$
 (3.2)

and
$$V(\bar{y}) = K \bar{Y}^2 C_y^2$$
. (3.3)

Comparing (3.2) with (3.3), the result follows.

Obviously, the inequality (3.1) can never be satisfied if $Q \le 0$. In fact a_r 's should be so chosen that Q > 0 is satisfied. The checking of the inequality (3.1) does not always require the exact knowledge of C_y^2 . If $C_{(1)}^2$ be a quantity ($\le C_y^2$), then a sufficient condition for \hat{T}_1 to be better than \hat{y} would be given by (3.1) with C_y^2 replaced by $C_{(1)}^2$. Thus when C_y is not known exactly, Searls' estimator can not be used at all and in that

case, using the knowledge of $C_{(1)}$ only, an estimator from T_1 class of linear estimators can be detected to behave better than \bar{y} , better in the sense of having smaller mean square error.

For an illustration, let N=25 and n=5. The weights a_r 's. in \widehat{T}_1 are taken arbitrarily with $l=\Sigma$ $a_r=0.8$ and such that Q>0 and (3.1) with C_y^2 being replaced by $C_{(1)}^2=1.0$ is satisfied.

Table 3.1 shows that one may generate estimators from \widehat{T}_1 with arbitrary weights better than p even when C_v is not known exactly, the case in which Searls' estimator \widehat{T}_s can not be used.

TABLE 3.1-RELATIVE EFFICIENCY OF T_1 OVER T_2 FOR ARBITRARY WEIGHTS N = 25, n = 25, $C_y > 1$, l = 0.8, $a_1 = 0.1$, $a_2 = 0.2$, $a_3 = 0.2$, $a_4 = 0.1$, $a_5 = 0.2$.

Relative Efficiency	, C _u								
<u> </u>	1.0	1.5	2.0	2.5	3.0	¥-3.5-	4.0		
(I)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
$[V(\bar{y})/M(T_S)]$	116.66	137.48	166.64	204.12	249.94	304.08	366.56		
$[V(p)/M(\hat{T_1})]$	104.29	121.22	128.51	132.20	134.29	135.58	136.44		

3.1 Guidelines to the Practitioner for the Choice of the Coefficients a,

Now in what follows, a procedure is given for making choices of a_i 's in \hat{T}_1 such that the results stated in Theorem 3.1 may be implemented in practice.

From Theorem 3.1, \hat{T}_1 defined in (1.1) would be better than \hat{y} , if,

$$(N-1)(l-1)^2/Q \leqslant C_{(1)}^2 \tag{3.4}$$

Let $a_r = r/\lambda$, where $r(1 \le r \le n)$ is a positive integer and λ is any real number satisfying Q > 0. Then from (3.4), we have the following inequality

$$q(\lambda) \leqslant 0 \tag{3.5}$$

where.

$$q(\lambda) = \alpha \lambda^{2} + \beta \lambda + \gamma$$

$$\alpha = (N-1) (1 - K C_{(1)}^{2})$$

$$\beta = -(N-1) n(n+1)$$

and

$$\Upsilon = \frac{n(n+1)}{2} \left[\frac{n(n+1)}{2} \left(N - 1 - C_{(1)}^2 \right) + \frac{N(2n+1) C_{(1)}^2}{3} \right]$$

Let D be the discriminant of $q(\lambda) = 0$ and let f = n/N be the sampling fraction. Then after routine calculation, D is found to be

$$(N-1) N^{2} C_{(1)}^{2} f(Nf+1) \left[(Nf+1) \left\{ 1 - \frac{C_{(1)}^{2} (1-f)}{f(N-1)} \right\} - \frac{2(2Nf+1)}{3} \left\{ 1 - \frac{C_{(1)}^{2} (1-f)}{f(N-1)} \right\} \right]$$

and hence, it may be shown that a sufficient condition for $q(\lambda) = 0$ to admit two real roots is given by

$$f < \min \left\{ \frac{2}{3}, \frac{C_{(1)}^2}{N - 1 + C_{(1)}^2} \right\}$$

Let λ_1 and λ_2 be two roots of $q(\lambda) = 0$. Then the inequality (3.5) will always be satisfied for those λ satisfying

$$\lambda < \lambda_1$$
 or $\lambda > \lambda_2$, when $\alpha < 0$ or $\lambda_1 < \lambda < \lambda_2$, in case $\alpha > 0$

Let $R_{0\lambda}$, $R_{1\lambda}$, $R_{2\lambda}$ and $R_{3\lambda}$ denote the ranges for λ for which Q > 0, $\lambda_1 < \lambda$, $\lambda > \lambda_2$ and $\lambda_1 < \lambda < \lambda_2$ respectively. Then obviously from Theorem 3.1, the estimators

$$\hat{T}_1' \stackrel{?}{=} \frac{1}{\lambda} \Sigma r y_r$$

will be better than y, if

$$\lambda \in R_{0\lambda} \cap R_{1\lambda}$$
 or $\lambda \in R_{0\lambda} \cap R_{2\lambda}$

and $\lambda \in R_{0\lambda} \cap R_{3\lambda}$.

As an illustration, let us consider a population with N = 51, $C_y > 4$. Let us take $C_{(1)}^2 = 10$ and n = 5. This gives

$$Q = 9.2 - (2580/\lambda^2).$$

Obviously, for all $\lambda > 17$ or $\lambda \leq -17$, we shall have Q > 0. Now the roots of $q(\lambda) = 0$ are given by

$$\lambda_1 = -54.45$$
 and $\lambda_2 = 16.25$

Therefore for any

$$\lambda > \max (17, 16.95)$$
 or $\lambda < \min (-17, -54.45)$

the estimator in \hat{T}'_1 will be better than sample mean \hat{y} .

Remarks: (i) As a general procedure to generate the weights a_r 's so that \hat{T}_1 is better than \bar{y} , we proceed as follows. For given N, n and $C_{(1)}$, we find a λ such that $q(\lambda) < 0$ is satisfied, then for $a_r = r/\lambda$, $(r = 1, 2, \ldots, n)$ in \hat{T}_1 the resulting estimator will be better than \bar{y} .

(ii) Though the expression for $q(\lambda)$ in (3.5) looks somewhat complicated, but once N, $C_{(1)}^2$ and n are known, the coefficients α , β and γ can easily be computed and hence the roots λ_1 , λ_2 of λ such that $q(\lambda) = 0$ may be obtained without any difficulty.

4. Unequal Weights in $\hat{T_1}$ Versus Equal Weights

Theorem 3.1 assures the superiority of an estimator $\hat{T}_1 = \sum_{r=1}^{n} a_r y_r$

over \hat{y} , but it does not guarantee whether \hat{T}_1 will be better than \hat{T}_S .

In this section, we observe that there always exists at least one set of choice (a_1, a_2, \ldots, a_n) with all $a_r \neq \lambda \ (\neq \lambda_0)$ such that the strategy (SRSWOR, \hat{T}_1) is better than (SRSWOR, \hat{T}_S) and hence the strategy (SRSWOR, \mathfrak{z}_S).

Let l and l_0 be the same as in Theorem 3.1 and let

$$[2/(1+KC_{(1)}^2)]-\lambda < l < \lambda \tag{4.1}$$

then, we have the following

THEOREM 4.1: A sufficient condition that the strategy (SRSWOR, \hat{T}_1) is better than the strategy (SRSWOR, \hat{T}_S) and hence the strategy (SRSWOR, \hat{y}) would be

$$l^3/n < l_0 < \frac{1}{n} [\lambda^3 - \{2(\lambda - l)/(1 + K C_{(1)}^2)\}]$$

Proof: From (2.1) and $M(\hat{T'_S})$, it may be shown that

$$M(\hat{T}_1) \leqslant M(\hat{T}'_S)$$

iff
$$\frac{N}{N-1} C_y^2 l_0 + l^2 \left(1 - \frac{C_y^2}{N-1}\right) < \lambda^2 (1 - K C_y^2) - 2(\lambda - l),$$
(4.2)

Since $l_0 \ge l^2/n$, a sufficient condition for (4.2) is obtained by replacing l^2 by $n l_0$, where it is assumed that $C_v^2 < (N-1)$. Thus $M(\hat{T}_1) < M(\hat{T}_s')$ if $l_0 < (1/n) [\lambda^2 - 2(\lambda - l)/(1 + K C_{(1)}^2)]$ provided $\lambda > l$.

ACKNOWLEDGEMENT

The author is grateful to Dr. T. P. Tripathi while preparing this paper and also wishes to thank the referee for his valuable comments in improving the earlier version.

REFERENCES

- [1] Ajgaonkar, S. G. P. (1967): On unordering best estimator in Horvitz—T₁-class of linear estimators, Sankhya, Ser. B, 29: 209-212,
- [2] Horvitz, D. G. and Thompson, D. J. (1952): A generalization of sampling without replacement from a finite universe, J. Amer. Statist. Assoc., 117: 663-685.
- [3] Koop, J. C. (1957): Contributions to the general theory of sampling finite populations with replacement and with unequal probabilities, Ph.D. Thesis, N. Carolina State College Library, N. Carolina Inst. Mimeo. Ser. 296.
- [4] ____(1963): Axioms of sample formation and their bearing on construction of linear estimators in sampling theory of finite universes, *Metrika*, 7: 81-111 and 165-204.
- [5] Searls, D. T. (1964): The utilisation of a known coefficient of variation in the estimation procedure, JASA, 59: 1225-1226.